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TD : PROGRAMMATION DYNAMIQUE 
== BELLMAN-FORD == 

 
Remarque : les rappels théoriques sont à la dernière page de ce sujet. 

Le fichier source à utiliser pour ce TD est : « TD5 – BellmanFord.py » 
 
Vous travaillez pour une entreprise de logistique qui doit optimiser ses livraisons. Le réseau 
de transport est modélisé par un graphe orienté où : 

- Chaque sommet représente un entrepôt ou un point de livraison ; 
- Chaque arête représente une route avec un coût de transport ; 
- Certaines routes ont des coûts négatifs (subventions, remises partenaires). 

 
L'objectif est de trouver le chemin de coût minimal depuis le dépôt central (source S) vers 
chaque destination, en utilisant l'algorithme de Bellman-Ford qui, contrairement à Dijkstra, 
fonctionne avec des poids négatifs. 
 
Voici le graphe de transport que nous utiliserons : 

 
Les données sont déjà définies dans le fichier source : 

# Graphe représenté par un dictionnaire d'adjacence 
# graphe[u] = [(v1, poids1), (v2, poids2), ...] 
graphe = { 
    'S': [('U', 2), ('V', 4)], 
    'U': [('V', -1), ('W', 2)], 
    'V': [('W', 3), ('T', 4)], 
    'W': [('T', 2)], 
    'T': [] 
} 
source = 'S' 
L = {}  # Dictionnaire de mémoïsation 

I) APPROCHE BOTTOM-UP (TABULATION) 

Dans cette partie, vous allez implémenter l'approche bottom-up qui remplit une table de 
tous les sous-problèmes, des plus petits aux plus grands. On utilisera un dictionnaire L pour 
stocker les valeurs L[(i, v)] qui représentent la distance minimale de la source S vers le 
sommet v en utilisant au plus i arêtes. 



TD : PROGRAMMATION DYNAMIQUE – BELLMAN-FORD 

2 

1. Écrire une fonction initialiser_cas_de_base(G, S, L) qui prend en paramètres le 
graphe G, le nom du sommet source S et le dictionnaire L et l’initialise puis retourne le 
dictionnaire L avec les cas de base (i = 0). 
 

2. Écrire une fonction obtenir_aretes_entrantes(G, v) qui retourne la liste des arêtes 
entrantes dans le sommet v sous la forme [(u, poids), ...] où u est un prédécesseur de v. 

Vérifier (l’ordre peut varier selon votre implémentation) : 

>>> obtenir_aretes_entrantes(graphe, 'V') 
[('S', 4), ('U', -1)] 

>>> obtenir_aretes_entrantes(graphe, 'T') 
[('V', 4), ('W', 2)] 

>>> obtenir_aretes_entrantes(graphe, 'S') 
[] 

 
3. Écrire une fonction remplir_table(G, L) qui remplit entièrement la table L en utilisant 

l'équation de récurrence (voir rappels à la fin du sujet). L'ordre de parcours est : pour i 
allant de 1 à n (nombre de sommets), et pour chaque i, parcourir tous les sommets v. 

 
Vérifier :   >>> L = {} 

>>> L = initialiser_cas_de_base(graphe,source,L) 
>>> L = remplir_table(graphe,L) 
>>> AfficheTable(L,graphe) 

 
 
 
 
 
 
 
 
 
 
 
4. Au regard de la table que vous obtenez, que pouvez-vous dire sur la présence ou 

l’absence d’un cycle négatif dans le graphe ? 
 
5. Écrire une fonction bellman_ford_bottomup(G, S) où S est la source et qui utilise les 

fonctions précédentes pour calculer et retourner le dictionnaire L et un booléen 
indiquant s'il y a un cycle négatif. 

Vérifier :  >>> bellman_ford_bottomup(graphe, source) 
({(0, 'S'): 0, (0, 'U'): inf, (0, 'V'): inf, (0, 
'W'): inf, (0, 'T'): inf, (1, 'S'): 0, (1, 'U'): 2, 
(1, 'V'): 4, (1, 'W'): inf, (1, 'T'): inf, (2, 'S'): 
0, (2, 'U'): 2, (2, 'V'): 1, (2, 'W'): 4, (2, 'T'): 
8, (3, 'S'): 0, (3, 'U'): 2, (3, 'V'): 1, (3, 'W'): 
4, (3, 'T'): 5, (4, 'S'): 0, (4, 'U'): 2, (4, 'V'): 
1, (4, 'W'): 4, (4, 'T'): 5, (5, 'S'): 0, (5, 'U'): 
2, (5, 'V'): 1, (5, 'W'): 4, (5, 'T'): 5}, False) 
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6. Modifier votre graphe afin de créer un cycle négatif atteignable depuis la source et 
vérifier qu’il est bien détectable : 

 
Attention : si un cycle négatif est détecté, les valeurs retournées ne correspondent pas à des 
distances minimales (problème non borné) ; elles reflètent seulement l’état de la table après 
un nombre fini d’itérations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
7. Écrire une fonction extraire_distances(L, graphe) qui extrait les distances finales 

depuis le dictionnaire L et retourne un dictionnaire {sommet: distance}. 
 
Vérifier : >>> L, cycle_negatif = bellman_ford_bottomup(graphe, source) 

>>> extraire_distances(L,graphe) 
{'S': 0, 'U': 2, 'V': 1, 'W': 4, 'T': 5} 

 
8. Combien de sous-problèmes sont calculés dans l'approche bottom-up pour un graphe à n 

sommets et m arêtes ? Quelle est la complexité temporelle et spatiale de cet algorithme 
? 

 
 

# Graphe avec cycle négatif 
graphe_neg = { 
    'S': [('U', 2), ('V', 4)], 
    'U': [('V', -1), ('W', 2)], 
    'V': [('W', -3), ('T', -4)], 
    'W': [('T', -2)], 
    'T': [('V',-1)] 
} 
source = 'S' 
L, cycle_negatif = bellman_ford_bottomup(graphe_neg, source) 
AfficheTable(L,graphe_neg) 
print(cycle_negatif) # <= Affiche True 
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II) APPROCHE TOP-DOWN AVEC MÉMOÏSATION 
Dans cette partie, vous allez implémenter l'algorithme récursif avec mémoïsation. L'idée est 
de partir du problème principal L[(n-1, v)] (si on ne cherche pas les cycles négatifs) et de le 
décomposer en sous-problèmes, en mémorisant les résultats pour éviter les calculs 
redondants. 
 
On utilisera un dictionnaire défini dans le programme principal pour la mémoïsation : L = {} 
 
1. Écrire une fonction récursive rec_bellman_ford1(G, S, dest) qui implémente la 

récurrence de Bellman-Ford avec mémoïsation. Cette fonction retourne la distance 
minimale de la source vers l’unique destination dest et ne gère pas la détection de cycle 
négatif. 
 
Vous pouvez vous aider du squelette ci-dessous : 

 
def rec_bellman_ford1(G,S,dest): 

    L = {} 

    n = len(G) 

 

    def f_rec(i,v): 

 

        # Utilise la mémoisation 

        if ..................: 

            return ......... 

 

        # Cas de base 

        if i == 0: 

            if v == S: 

                L[(i,v)] = ......... 

            else: 

                L[(i,v)] = ......... 

            return L[(i,v)] 

 

        # Cas n°1 : hériter de la valeur précédente 

        val_opt = ......... 

 

        # Cas n°2 : Tester tous les prédécesseurs 

        for (u,poids) in obtenir_aretes_entrantes(G,v): 

            candidat = .................. 

            val_opt = min(.........,.........) 

 

        # Mémoisation 

        L[(i,v)] = ......... 

 

        return ......... 

 

    distance = ......... 

    return distance, L 
 
 

Vérifier :   
>>> distance, L = rec_bellman_ford1(graphe,source,'T') 
>>> print(distance) 
5 
>>> AfficheTable(L,graphe) 
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2. Écrire une fonction récursive rec_bellman_ford2(G, S) qui implémente la récurrence 
de Bellman-Ford avec mémoïsation. Cette fonction retourne maintenant toutes les 
distances minimales vers les différentes destinations sous forme d’un dictionnaire ainsi 
qu’un booléen précisant s’il existe un cycle négatif ou non dans le graphe. 

 
Vérifier :  >>> rec_bellman_ford2(graphe,source) 

({'S': 0, 'U': 2, 'V': 1, 'W': 4, 'T': 5}, False) 

>>> rec_bellman_ford2(graphe_neg,source) 
({'S': 0, 'U': 2, 'V': -4, 'W': -4, 'T': -5}, True) 

 
3. Quelle est la complexité temporelle de l'algorithme top-down avec mémoïsation dans le 

pire cas ? Quelle est la complexité spatiale (dictionnaire + pile d'appels) ? 

III) RECONSTRUCTION DE LA SOLUTION 

Maintenant que nous savons calculer les distances minimales, nous devons reconstruire le 
chemin optimal. 
 
Pour cela, on « remonte » dans la table L depuis L[(n-1, destination)] jusqu'à L[(0, source)] 
pour déterminer, à chaque étape, quelle décision a été prise. 
 
1. Modifier votre fonction rec_bellman_ford2() pour qu’elle renvoie, en plus du 

dictionnaire des distances et du booléen indiquant la présence ou l’absence d’un cycle 
négatif, la table L. 

 
2. Écrire une fonction determiner_choix(G, L, i, v) qui détermine le choix optimal 

pour arriver à L[(i, v)]. Cette fonction retourne un tuple (choix, new_i, new_v) : 
- choix est une chaîne décrivant le choix : "HERITER" ou "ARETE u->v" ; 
- new_i et new_v sont les nouveaux indices pour continuer la reconstruction. 

 
Vérifier : >>> distances, cycle_negatif, L = 

rec_bellman_ford2(graphe,source) 

>>> determiner_choix(graphe,L,4,'T') 
('HERITER', 3, 'T') 

>>> determiner_choix(graphe,L,3,'T') 
('ARETE V->T', 2, 'V') 

>>> determiner_choix(graphe,L,2,'V') 
('ARETE U->V', 1, 'U') 

 
3. Écrire une fonction reconstruire_chemin(G, L, source, destination) qui retourne 

la liste des sommets du chemin optimal depuis la source jusqu'à la destination. 
 

Vérifier : >>> distances, cycle_negatif, L = 
rec_bellman_ford2(graphe,source) 
>>> reconstruire_chemin(graphe,L,source,'T') 
['S', 'U', 'V', 'T'] 
>>> reconstruire_chemin(graphe,L,source,'W') 
['S', 'U', 'W'] 
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RAPPELS THÉORIQUES 

 
Formulation du problème 

Soit un graphe orienté G = (V, E) avec n sommets et m arêtes, où chaque arête e possède 
une longueur réelle ℓₑ (possiblement négative). Étant donnée une source s ∈ V, on cherche à 
calculer pour chaque sommet v la distance minimale dist(s, v) depuis s. 
 
Sous-problèmes et notation 

On note Li,v la longueur minimale d'un chemin de s vers v utilisant au plus i arêtes. Si aucun 

tel chemin n'existe, Li,v = +. 
 
Relation de récurrence 

Pour tout i ≥ 1 et tout v ∈ V : 
 

𝐿𝑖,𝑣 = 𝑚𝑖𝑛 {

𝐿𝑖−1,𝑣       (𝑐𝑎𝑠 𝑛°1)

𝑚𝑖𝑛(𝑤,𝑣) ∈ 𝐸{ 𝐿𝑖−1,𝑤  +  ℓ𝑤,𝑣} (𝑐𝑎𝑠 𝑛° 2)
 

 
Cas n°1 : Li-1,v — le chemin optimal utilise (i-1) arêtes ou moins 
Cas n°2 : Li-1,w + ℓw,v — le chemin optimal utilise exactement i arêtes, la dernière étant (w, v) 
 
Cas de base 

Les cas de base sont (s est le sommet de départ) : 

- L0,s = 0 (il existe un chemin de s → s utilisant 0 arêtes – le chemin vide de longueur 0) 

- L0,v = + pour tout v  s  V (avec 0 arêtes, on ne peut atteindre aucun sommet autre 
que s) 

 
Critère d'arrêt et détection de cycle négatif 

Sans cycle négatif, les valeurs se stabilisent au plus tard à i = n-1 (un plus court chemin 
simple a au plus n-1 arêtes). Si Ln,v < Ln-1,v pour au moins un sommet v, alors le graphe 
contient un cycle négatif atteignable depuis la source. 
 
Algorithme de reconstruction 

Une fois la table des valeurs optimales remplie, on reconstruit le chemin en « remontant » 
depuis le problème (n-1, destination) jusqu'à (0, source). 
 
À chaque position (i, v), on détermine quelle décision a permis d'obtenir Li,v : 

- Si Li,v == Li-1,v → Héritage (pas de nouvelle arête) 

- Sinon, chercher w tel que Li,v == Li-1,w + ℓw,v → l'arête (w, v) fait partie du chemin 
optimal. 

 


