
TD : PROGRAMMATION DYNAMIQUE – BELLMAN-FORD

1

TD : PROGRAMMATION DYNAMIQUE
== BELLMAN-FORD ==

Remarque : les rappels théoriques sont à la dernière page de ce sujet.

Le fichier source à utiliser pour ce TD est : « TD5 – BellmanFord.py »

Vous travaillez pour une entreprise de logistique qui doit optimiser ses livraisons. Le réseau
de transport est modélisé par un graphe orienté où :

- Chaque sommet représente un entrepôt ou un point de livraison ;
- Chaque arête représente une route avec un coût de transport ;
- Certaines routes ont des coûts négatifs (subventions, remises partenaires).

L'objectif est de trouver le chemin de coût minimal depuis le dépôt central (source S) vers
chaque destination, en utilisant l'algorithme de Bellman-Ford qui, contrairement à Dijkstra,
fonctionne avec des poids négatifs.

Voici le graphe de transport que nous utiliserons :

Les données sont déjà définies dans le fichier source :

Graphe représenté par un dictionnaire d'adjacence
graphe[u] = [(v1, poids1), (v2, poids2), ...]
graphe = {
 'S': [('U', 2), ('V', 4)],
 'U': [('V', -1), ('W', 2)],
 'V': [('W', 3), ('T', 4)],
 'W': [('T', 2)],
 'T': []
}
source = 'S'
L = {} # Dictionnaire de mémoïsation

I) APPROCHE BOTTOM-UP (TABULATION)

Dans cette partie, vous allez implémenter l'approche bottom-up qui remplit une table de
tous les sous-problèmes, des plus petits aux plus grands. On utilisera un dictionnaire L pour
stocker les valeurs L[(i, v)] qui représentent la distance minimale de la source S vers le
sommet v en utilisant au plus i arêtes.

TD : PROGRAMMATION DYNAMIQUE – BELLMAN-FORD

2

1. Écrire une fonction initialiser_cas_de_base(G, S, L) qui prend en paramètres le
graphe G, le nom du sommet source S et le dictionnaire L et l’initialise puis retourne le
dictionnaire L avec les cas de base (i = 0).

2. Écrire une fonction obtenir_aretes_entrantes(G, v) qui retourne la liste des arêtes
entrantes dans le sommet v sous la forme [(u, poids), ...] où u est un prédécesseur de v.

Vérifier (l’ordre peut varier selon votre implémentation) :

>>> obtenir_aretes_entrantes(graphe, 'V')
[('S', 4), ('U', -1)]

>>> obtenir_aretes_entrantes(graphe, 'T')
[('V', 4), ('W', 2)]

>>> obtenir_aretes_entrantes(graphe, 'S')
[]

3. Écrire une fonction remplir_table(G, L) qui remplit entièrement la table L en utilisant

l'équation de récurrence (voir rappels à la fin du sujet). L'ordre de parcours est : pour i
allant de 1 à n (nombre de sommets), et pour chaque i, parcourir tous les sommets v.

Vérifier : >>> L = {}

>>> L = initialiser_cas_de_base(graphe,source,L)
>>> L = remplir_table(graphe,L)
>>> AfficheTable(L,graphe)

4. Au regard de la table que vous obtenez, que pouvez-vous dire sur la présence ou

l’absence d’un cycle négatif dans le graphe ?

5. Écrire une fonction bellman_ford_bottomup(G, S) où S est la source et qui utilise les

fonctions précédentes pour calculer et retourner le dictionnaire L et un booléen
indiquant s'il y a un cycle négatif.

Vérifier : >>> bellman_ford_bottomup(graphe, source)
({(0, 'S'): 0, (0, 'U'): inf, (0, 'V'): inf, (0,
'W'): inf, (0, 'T'): inf, (1, 'S'): 0, (1, 'U'): 2,
(1, 'V'): 4, (1, 'W'): inf, (1, 'T'): inf, (2, 'S'):
0, (2, 'U'): 2, (2, 'V'): 1, (2, 'W'): 4, (2, 'T'):
8, (3, 'S'): 0, (3, 'U'): 2, (3, 'V'): 1, (3, 'W'):
4, (3, 'T'): 5, (4, 'S'): 0, (4, 'U'): 2, (4, 'V'):
1, (4, 'W'): 4, (4, 'T'): 5, (5, 'S'): 0, (5, 'U'):
2, (5, 'V'): 1, (5, 'W'): 4, (5, 'T'): 5}, False)

TD : PROGRAMMATION DYNAMIQUE – BELLMAN-FORD

3

6. Modifier votre graphe afin de créer un cycle négatif atteignable depuis la source et
vérifier qu’il est bien détectable :

Attention : si un cycle négatif est détecté, les valeurs retournées ne correspondent pas à des
distances minimales (problème non borné) ; elles reflètent seulement l’état de la table après
un nombre fini d’itérations.

7. Écrire une fonction extraire_distances(L, graphe) qui extrait les distances finales

depuis le dictionnaire L et retourne un dictionnaire {sommet: distance}.

Vérifier : >>> L, cycle_negatif = bellman_ford_bottomup(graphe, source)

>>> extraire_distances(L,graphe)
{'S': 0, 'U': 2, 'V': 1, 'W': 4, 'T': 5}

8. Combien de sous-problèmes sont calculés dans l'approche bottom-up pour un graphe à n

sommets et m arêtes ? Quelle est la complexité temporelle et spatiale de cet algorithme
?

Graphe avec cycle négatif
graphe_neg = {
 'S': [('U', 2), ('V', 4)],
 'U': [('V', -1), ('W', 2)],
 'V': [('W', -3), ('T', -4)],
 'W': [('T', -2)],
 'T': [('V',-1)]
}
source = 'S'
L, cycle_negatif = bellman_ford_bottomup(graphe_neg, source)
AfficheTable(L,graphe_neg)
print(cycle_negatif) # <= Affiche True

TD : PROGRAMMATION DYNAMIQUE – BELLMAN-FORD

4

II) APPROCHE TOP-DOWN AVEC MÉMOÏSATION
Dans cette partie, vous allez implémenter l'algorithme récursif avec mémoïsation. L'idée est
de partir du problème principal L[(n-1, v)] (si on ne cherche pas les cycles négatifs) et de le
décomposer en sous-problèmes, en mémorisant les résultats pour éviter les calculs
redondants.

On utilisera un dictionnaire défini dans le programme principal pour la mémoïsation : L = {}

1. Écrire une fonction récursive rec_bellman_ford1(G, S, dest) qui implémente la

récurrence de Bellman-Ford avec mémoïsation. Cette fonction retourne la distance
minimale de la source vers l’unique destination dest et ne gère pas la détection de cycle
négatif.

Vous pouvez vous aider du squelette ci-dessous :

def rec_bellman_ford1(G,S,dest):

 L = {}

 n = len(G)

 def f_rec(i,v):

 # Utilise la mémoisation

 if:

 return

 # Cas de base

 if i == 0:

 if v == S:

 L[(i,v)] =

 else:

 L[(i,v)] =

 return L[(i,v)]

 # Cas n°1 : hériter de la valeur précédente

 val_opt =

 # Cas n°2 : Tester tous les prédécesseurs

 for (u,poids) in obtenir_aretes_entrantes(G,v):

 candidat =

 val_opt = min(.........,.........)

 # Mémoisation

 L[(i,v)] =

 return

 distance =

 return distance, L

Vérifier :
>>> distance, L = rec_bellman_ford1(graphe,source,'T')
>>> print(distance)
5
>>> AfficheTable(L,graphe)

TD : PROGRAMMATION DYNAMIQUE – BELLMAN-FORD

5

2. Écrire une fonction récursive rec_bellman_ford2(G, S) qui implémente la récurrence
de Bellman-Ford avec mémoïsation. Cette fonction retourne maintenant toutes les
distances minimales vers les différentes destinations sous forme d’un dictionnaire ainsi
qu’un booléen précisant s’il existe un cycle négatif ou non dans le graphe.

Vérifier : >>> rec_bellman_ford2(graphe,source)

({'S': 0, 'U': 2, 'V': 1, 'W': 4, 'T': 5}, False)

>>> rec_bellman_ford2(graphe_neg,source)
({'S': 0, 'U': 2, 'V': -4, 'W': -4, 'T': -5}, True)

3. Quelle est la complexité temporelle de l'algorithme top-down avec mémoïsation dans le

pire cas ? Quelle est la complexité spatiale (dictionnaire + pile d'appels) ?

III) RECONSTRUCTION DE LA SOLUTION

Maintenant que nous savons calculer les distances minimales, nous devons reconstruire le
chemin optimal.

Pour cela, on « remonte » dans la table L depuis L[(n-1, destination)] jusqu'à L[(0, source)]
pour déterminer, à chaque étape, quelle décision a été prise.

1. Modifier votre fonction rec_bellman_ford2() pour qu’elle renvoie, en plus du

dictionnaire des distances et du booléen indiquant la présence ou l’absence d’un cycle
négatif, la table L.

2. Écrire une fonction determiner_choix(G, L, i, v) qui détermine le choix optimal

pour arriver à L[(i, v)]. Cette fonction retourne un tuple (choix, new_i, new_v) :
- choix est une chaîne décrivant le choix : "HERITER" ou "ARETE u->v" ;
- new_i et new_v sont les nouveaux indices pour continuer la reconstruction.

Vérifier : >>> distances, cycle_negatif, L =

rec_bellman_ford2(graphe,source)

>>> determiner_choix(graphe,L,4,'T')
('HERITER', 3, 'T')

>>> determiner_choix(graphe,L,3,'T')
('ARETE V->T', 2, 'V')

>>> determiner_choix(graphe,L,2,'V')
('ARETE U->V', 1, 'U')

3. Écrire une fonction reconstruire_chemin(G, L, source, destination) qui retourne

la liste des sommets du chemin optimal depuis la source jusqu'à la destination.

Vérifier : >>> distances, cycle_negatif, L =
rec_bellman_ford2(graphe,source)
>>> reconstruire_chemin(graphe,L,source,'T')
['S', 'U', 'V', 'T']
>>> reconstruire_chemin(graphe,L,source,'W')
['S', 'U', 'W']

TD : PROGRAMMATION DYNAMIQUE – BELLMAN-FORD

6

RAPPELS THÉORIQUES

Formulation du problème

Soit un graphe orienté G = (V, E) avec n sommets et m arêtes, où chaque arête e possède
une longueur réelle ℓₑ (possiblement négative). Étant donnée une source s ∈ V, on cherche à
calculer pour chaque sommet v la distance minimale dist(s, v) depuis s.

Sous-problèmes et notation

On note Li,v la longueur minimale d'un chemin de s vers v utilisant au plus i arêtes. Si aucun

tel chemin n'existe, Li,v = +.

Relation de récurrence

Pour tout i ≥ 1 et tout v ∈ V :

𝐿𝑖,𝑣 = 𝑚𝑖𝑛 {

𝐿𝑖−1,𝑣 (𝑐𝑎𝑠 𝑛°1)

𝑚𝑖𝑛(𝑤,𝑣) ∈ 𝐸{ 𝐿𝑖−1,𝑤 + ℓ𝑤,𝑣} (𝑐𝑎𝑠 𝑛° 2)

Cas n°1 : Li-1,v — le chemin optimal utilise (i-1) arêtes ou moins
Cas n°2 : Li-1,w + ℓw,v — le chemin optimal utilise exactement i arêtes, la dernière étant (w, v)

Cas de base

Les cas de base sont (s est le sommet de départ) :

- L0,s = 0 (il existe un chemin de s → s utilisant 0 arêtes – le chemin vide de longueur 0)

- L0,v = + pour tout v  s  V (avec 0 arêtes, on ne peut atteindre aucun sommet autre
que s)

Critère d'arrêt et détection de cycle négatif

Sans cycle négatif, les valeurs se stabilisent au plus tard à i = n-1 (un plus court chemin
simple a au plus n-1 arêtes). Si Ln,v < Ln-1,v pour au moins un sommet v, alors le graphe
contient un cycle négatif atteignable depuis la source.

Algorithme de reconstruction

Une fois la table des valeurs optimales remplie, on reconstruit le chemin en « remontant »
depuis le problème (n-1, destination) jusqu'à (0, source).

À chaque position (i, v), on détermine quelle décision a permis d'obtenir Li,v :

- Si Li,v == Li-1,v → Héritage (pas de nouvelle arête)

- Sinon, chercher w tel que Li,v == Li-1,w + ℓw,v → l'arête (w, v) fait partie du chemin
optimal.

