TD : PROGRAMMATION DYNAMIQUE — BELLMAN-FORD

TD : PROGRAMMATION DYNAMIQUE
== BELLMAN-FORD ==

Remarque : les rappels théoriques sont a la derniére page de ce sujet.

Le fichier source a utiliser pour ce TD est : « TD5 — BellmanFord.py »

Vous travaillez pour une entreprise de logistique qui doit optimiser ses livraisons. Le réseau
de transport est modélisé par un graphe orienté ou :

- Chaque sommet représente un entrep6t ou un point de livraison ;

- Chaque aréte représente une route avec un co(t de transport ;

- Certaines routes ont des colts négatifs (subventions, remises partenaires).

L'objectif est de trouver le chemin de colt minimal depuis le dép6t central (source S) vers
chaque destination, en utilisant l'algorithme de Bellman-Ford qui, contrairement a Dijkstra,

fonctionne avec des poids négatifs.

Voici le graphe de transport que nous utiliserons :

Les données sont déja définies dans le fichier source :

Graphe représenté par un dictionnaire d'adjacence
graphel[u] = [(vl, poidsl), (v2, poids2), ...]
graphe = {

'Sst: [(C'UY, 2), (v, 4],

s [Cv, o-1), Cwe, 2)1,

v [C'we, 3), (T, 4],

we: [C'TY, 2,

'T': [1
}
source = 'S'
L = {} # Dictionnaire de mémoisation

I) APPROCHE BOTTOM-UP (TABULATION)

Dans cette partie, vous allez implémenter I'approche bottom-up qui remplit une table de
tous les sous-problémes, des plus petits aux plus grands. On utilisera un dictionnaire L pour
stocker les valeurs L[(i, v)] qui représentent la distance minimale de la source S vers le
sommet v en utilisant au plus i arétes.

TD : PROGRAMMATION DYNAMIQUE — BELLMAN-FORD

1. Ecrire une fonction initialiser_cas_de_base(G, S, L) quiprend en paramétres le
graphe G, le nom du sommet source S et le dictionnaire L et I'initialise puis retourne le
dictionnaire L avec les cas de base (i = 0).

2. Ecrire une fonction obtenir_aretes_entrantes(6, v) quiretourne la liste des arétes
entrantes dans le sommet v sous la forme [(u, poids), ...] ou u est un prédécesseur de v.

Vérifier (I'ordre peut varier selon votre implémentation) :

>>> obtenir_aretes_entrantes(graphe, 'V')
[(¢'s', 4, C'u, -1)1]
>>> obtenir_aretes_entrantes(graphe, 'T')
[cv, 4, c'w, 2)]
>>> obtenir_aretes_entrantes(graphe, 'S')

[]

3. Ecrire une fonction remplir_table(6, L) quiremplit entiérement la table L en utilisant
I'équation de récurrence (voir rappels a la fin du sujet). L'ordre de parcours est : pour i
allant de 1 a n (nombre de sommets), et pour chaque i, parcourir tous les sommets v.

Vérifier : >>> L = {}
>>> L = initialiser_cas_de_base(graphe, source,L)
Table de programmation dynamique >>> L = remplir_table(graphe,L)

Nombre max. d'arétes (i)

Sommets

>>> AfficheTable(L, graphe)

4. Auregard de la table que vous obtenez, que pouvez-vous dire sur la présence ou
I’absence d’un cycle négatif dans le graphe ?

5. Ecrire une fonction bellman_ford_bottomup(G, S) oUuS est la source et qui utilise les
fonctions précédentes pour calculer et retourner le dictionnaire L et un booléen
indiquant s'il y a un cycle négatif.

Vérifier :

>>> pellman_ford_bottomup(graphe, source)
({(e, 'S'): @, (B, 'UY): inf, (B, 'V'): inf, (O,
"W): inf, (0, 'T"): inf, (1, 'S'): 0, (1, 'U"): 2,

(1, 'v'): 4, (1, 'wW): inf, (1, 'T'): inf, (2, 'S'):
o, (2, 'U:2, (2, 'V): 1, (2, 'W): 4, (2, 'T'):
8, (3, 's"): 0, (3, 'U): 2, (3, 'V): 1, (3, "W):
4, (3, 'T'): 5, (4, 'S'): 0, (4, 'U): 2, (4, 'V'):
1, (4, "W): 4, (4, 'T): 5, (5, 's'): 0, (5, 'U):
2, (5, 'v'): 1, (5, 'W): 4, (5, 'T'): 5}, False)

TD : PROGRAMMATION DYNAMIQUE — BELLMAN-FORD

6. Modifier votre graphe afin de créer un cycle négatif atteignable depuis la source et
vérifier qu’il est bien détectable :

Attention : si un cycle négatif est détecté, les valeurs retournées ne correspondent pas a des
distances minimales (probléeme non borné) ; elles reflétent seulement I’état de la table aprés
un nombre fini d’itérations.

Cycle ..
négatif

Graphe avec cycle négatif

graphe_neg = {
'$': [Cut, 2), (v, 4],
‘ot [Cve, -1, (e, 2)],
v [Cwe, -3, T, -4)],
we: [T, -2)1,
‘T [CV,-D)]

}

source = 'S'

L, cycle_negatif = bellman_ford_bottomup(graphe_neg, source)

AfficheTable(L,graphe_neqg)

print(cycle_negatif) # <= Affiche True

Table de programmation dynamique

Nombre max. d'arétes (i)

Sommets

7. Ecrire une fonction extraire_distances(L, graphe) qui extrait les distances finales
depuis le dictionnaire L et retourne un dictionnaire {sommet: distance}.

Vérifier : >>> L, cycle_negatif = bellman_ford_bottomup(graphe, source)

>>> extraire_distances(L,graphe)
{'s': 0, 'U': 2, 'V': 1, 'W': 4, 'T': 5}

8. Combien de sous-problemes sont calculés dans I'approche bottom-up pour un graphe a n

sommets et m arétes ? Quelle est la complexité temporelle et spatiale de cet algorithme
?

TD : PROGRAMMATION DYNAMIQUE — BELLMAN-FORD

1) APPROCHE TOP-DOWN AVEC MEMOISATION

Dans cette partie, vous allez implémenter I'algorithme récursif avec mémoisation. L'idée est
de partir du probléme principal L[(n-1, v)] (si on ne cherche pas les cycles négatifs) et de le
décomposer en sous-problémes, en mémorisant les résultats pour éviter les calculs
redondants.

On utilisera un dictionnaire défini dans le programme principal pour la mémoisation : L = {}

1. Ecrire une fonction récursive rec_bellman_ford1(G, S, dest) quiimplémente la
récurrence de Bellman-Ford avec mémoisation. Cette fonction retourne la distance
minimale de la source vers 'unique destination dest et ne gére pas la détection de cycle

négatif.

Vous pouvez vous aider du squelette ci-dessous :

def rec bellman fordl(G,S,dest): Table de programmation dynamigue
L= {}
n = len(G)
def f rec(i,v): T
@
Utilise la mémoisation s
if L é
return £
E
Cas de base £
if i == S
if v ==
LI(E, V)] = coeeenn
else:) !:J ‘ \I/ ‘ w T
LI(i,v)] = Sommets
return L[(i,Vv)]
Cas n°1 : hériter de la valeur précédente
val opt =
Cas n°2 : Tester tous les prédécesseurs
for (u,poids) in obtenir aretes entrantes(G,v):
candidat = ..ttt
val opt = min(......... J e)

Mémoisation
LI(i,v)] =

return

distance =
return distance, L

Vérifier
>>> distance, L = rec_bellman_fordl(graphe,source,'T"')
>>> print(distance)
5
>>> AfficheTable(L, graphe)

TD : PROGRAMMATION DYNAMIQUE — BELLMAN-FORD

2. Ecrire une fonction récursive rec_bellman_ford2(6, S) quiimplémente la récurrence
de Bellman-Ford avec mémoisation. Cette fonction retourne maintenant toutes les
distances minimales vers les différentes destinations sous forme d’un dictionnaire ainsi
qu’un booléen précisant s’il existe un cycle négatif ou non dans le graphe.

Vérifier : >>> rec_bellman_ford2(graphe, source)
({'s': @, 'u': 2, 'Vv': 1, 'W': 4, 'T': 5}, False)
>>> rec_bellman_ford2(graphe_neg, source)
({'s': @, 'U': 2, 'V': -4, '"W': -4, 'T': -5}, True)

3. Quelle est la complexité temporelle de I'algorithme top-down avec mémoisation dans le
pire cas ? Quelle est la complexité spatiale (dictionnaire + pile d'appels) ?

Ill) RECONSTRUCTION DE LA SOLUTION

Maintenant que nous savons calculer les distances minimales, nous devons reconstruire le
chemin optimal.

Pour cela, on « remonte » dans la table L depuis L[(n-1, destination)] jusqu'a L[(O, source)]
pour déterminer, a chaque étape, quelle décision a été prise.

1. Modifier votre fonction rec_bellman_ford2() pour qu’elle renvoie, en plus du
dictionnaire des distances et du booléen indiquant la présence ou I'absence d’un cycle
négatif, la table L.

2. Ecrire une fonction determiner_choix (6, L, i, v) qui détermine le choix optimal
pour arriver a L[(i, v)]. Cette fonction retourne un tuple (choix, new_i, new_v) :
- choix est une chaine décrivant le choix : "HERITER" ou "ARETE u->v" ;
- new_i et new_v sont les nouveaux indices pour continuer la reconstruction.

Vérifier : >>> distances, cycle_negatif, L =
rec_bellman_ford2(graphe, source)

>>> determiner_choix(graphe,L,4,'T")
('HERITER', 3, 'T")

>>> determiner_choix(graphe,L,3,'T')
('ARETE V->T', 2, 'V')

>>> determiner_choix(graphe,L,2,'V')
('ARETE U->V', 1, 'U")

3. Ecrire une fonction reconstruire_chemin(G, L, source, destination) qui retourne
la liste des sommets du chemin optimal depuis la source jusqu'a la destination.

Vérifier : »>>> distances, cycle_negatif, L =
rec_bellman_ford2(graphe, source)
>>> reconstruire_chemin(graphe, L, source,'T"')
['s', 'u', 'v', 'T']
>>> reconstruire_chemin(graphe, L, source, 'W"')
['Ss', 'U', '‘w']

TD : PROGRAMMATION DYNAMIQUE — BELLMAN-FORD

RAPPELS THEORIQUES

Formulation du probleme

Soit un graphe orienté G = (V, E) avec n sommets et m arétes, ou chaque aréte e possede
une longueur réelle &, (possiblement négative). Etant donnée une source s € V, on cherche a
calculer pour chaque sommet v la distance minimale dist(s, v) depuis s.

Sous-problémes et notation
On note Liy la longueur minimale d'un chemin de s vers v utilisant au plus i arétes. Si aucun
tel chemin n'existe, Liy = +o0.

Relation de récurrence
Pourtouti>1ettoutveV:

Li_1y (cas n°1)
L;, = min
Minay vy e g Li-iw + wp) (casn®2)

Cas n°1: Li.1,y — le chemin optimal utilise (i-1) arétes ou moins
Cas n°2 : Li.y,w + 8w,y — le chemin optimal utilise exactement i arétes, la derniére étant (w, v)

Cas de base
Les cas de base sont (s est le sommet de départ) :
- Los =0 (il existe un chemin de s — s utilisant 0 arétes — le chemin vide de longueur 0)
- Loy =+00 pour toutv#s e V (avec 0 arétes, on ne peut atteindre aucun sommet autre
ques)

Critére d'arrét et détection de cycle négatif

Sans cycle négatif, les valeurs se stabilisent au plus tard a i = n-1 (un plus court chemin
simple a au plus n-1 arétes). Si Lny < Ln-1,v pour au moins un sommet v, alors le graphe
contient un cycle négatif atteignable depuis la source.

Algorithme de reconstruction

Une fois la table des valeurs optimales remplie, on reconstruit le chemin en « remontant »
depuis le probleme (n-1, destination) jusqu'a (0, source).

A chaque position (i, v), on détermine quelle décision a permis d'obtenir Liy :
- Si Liy == Li.1,y — Héritage (pas de nouvelle aréte)
- Sinon, chercher w tel que Ly == Li.1w + 8wy — l'aréte (w, v) fait partie du chemin
optimal.

